Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete
نویسندگان
چکیده
This paper aims at presenting the effects of short-term sustained load and temperature on time-dependent deformation of carbon fiber-reinforced polymer (CFRP) bonded to concrete and pull-off strength at room temperature after the sustained loading period. The approach involves experimental and numerical analysis. Single-lap shear specimens were used to evaluate temperature and short-term sustained loading effects on time-dependent behavior under sustained loading and debonding behavior under pull-off loading after a sustained loading period. The numerical model was parameterized with experiments on the concrete, FRP, and epoxy. Good correlation was seen between the numerical results and single-lap shear experiments. Sensitivity studies shed light on the influence of temperature, epoxy modulus, and epoxy thickness on the redistribution of interfacial shear stress during sustained loading. This investigation confirms the hypothesis that interfacial stress redistribution can occur due to sustained load and elevated temperature and its effect can be significant.
منابع مشابه
Experimental and Theoretical Investigation on Shear Strengthening of RC Precraced Continuous T-beams Using CFRP Strips
Carbon fiber reinforced polymer (CFRP) sheets are externally bonded to reinforced concrete (RC) members to provide additional strength such as flexural, shear, etc. It has been widely accepted that carbon fiber reinforced polymers (CFRPs) can be used effectively to strengthen reinforced concrete (RC) members. This paper is intended to study and use externally bonded CFRP strips to repair and st...
متن کاملRetrofitting of Reinforced Concrete Beams with Steel Fiber Reinforced Composite Jackets
In the present study, a new method for retrofitting reinforced concrete beam is introduced in which steel-concrete composite jackets containing steel fiber is used. For this purpose, 75% of the peripheral surface of reinforced concrete beams was initially reinforced using steel plates and bolts, and steel fiber reinforced concrete was used between the steel plates and the peripheral surfaces of...
متن کاملEffects of Using Multilayers of High Resistance AFRP on Loading Capacity of Reinforced Concrete Beams in Comparison with Low Resistance AFRP Considering EBROG Method
Externally Bonded Reinforcement on Grooves (EBROG) is a new method that has been introduced to postpone or eliminate debonding of FRP sheets from concrete surface in concrete beams strengthened for flexure and increase loading capacity. For strengthening reinforced conceret beams in strructure, use of different types of FRP like: laminate, AFRP, CFRP, and GFRP. By there is some differences bet...
متن کاملCyclic and Monotonic Behavior of Strengthened and Unstrengthened Square Reinforced Concrete Columns
The use of composite materials is an effective technique to enhance the capacity of reinforced concrete columns subjected to the seismic loading due to their high tensile strength. In this paper, numerical models are developed in order to predict the experimental behavior of square reinforced concrete columns strengthened by glass fiber reinforced polymer and steel bars and unstrengthened colum...
متن کاملInterface of Fiber Reinforced Polymer Laminates Externally Bonded to Concrete Substrate: from Test Methods to Bond Modeling
This paper summarizes a series of studies on the interface of fiber reinforced polymer laminates externally bonded to concrete substrates, carried out in the Laboratory of Engineering for Maintenance Systems, Hokkaido University. Appropriate test methods and bond models for shear bond, tensile bond and cleavage bond (bond under dowel force) are shown. Finally, experimental results on shear bond...
متن کامل